e LR a1
R *ﬁ_ﬁzr 1T

Functional Prcgrammlng

AL, 5K 1
IERKEF 1T EF MR
2023%F09~12H

Adapted from Graham’s Lecture slides

F3F: RESKx

type and type class

What is a Type?

A type is a collection of related values

For example, In Haskell
the basic type Boo L, contains two logical values
True, and False

151X

Type Errors / B EF 11X

Applying a function to one or more arguments
of the wrong type is called a type error

1 is a number and False is a logical value
but + requires two numbers

® O @® natas—ghc-9.4.2 -B/Users/nrutas/.ghcup/ghc/9.4.2/lib/ghc-9.4.2/lib --interactive — 62x8 ‘
ghci> 1 + False

<interactive>:1:1:
e No instance for (Num Bool) arising from the literal '1’
e In the first argument of ’‘(+)’, namely ‘1’
In the expression: 1 + False
In an equation for ’it’: 1t = 1 + False

Types In Haskell

> |If evaluating an expression e would produce a
value of type T, then e has type I, written

e :: 1

> Every well formed expression has a type, which
can be automatically calculated at compile time
using a process called type inference.

fi:A—>B e A

Types In Haskell

> All type errors are found at compile time, which
makes programs safer and faster by removing
the need for type checks at run time

> In GHCI, the : type command calculates the
type of an expression, without evaluating it

® O @ nrutas—ghc-9.4.2 -B/...

ghci> not False

True

ghci> :type not False
not False :: Bool

ghci>

Basic Types in Haskell

logical values: True False

Bool
exported by Prelude
an enumeration whose values represent Unicode code points
Char (i.e. characters, see http://www.unicode.org/ for details)
exported by Prelude
String definition: type String = [char]

exported by Prelude

Basic Types in Haskell

> fix-precision integer numbers. GHC: [-2763, 2763-1]

Lnt > exported by Prelude

> arbitrary-precision integer numbers

Integer |, exported by Prelude

> fix-precision unsigned integer numbers
Word | the same size with Int
> exported by Prelude

> arbitrary-precision unsigned integer numbers
Natural » exported by Numeric.Natural (a module in the base
package)

Basic Iypes in Haskell

Float

single-precision floating-point numbers

exported by Prelude

Doub lLe

double-precision floating-point numbers

exported by Prelude

® O ® nrutas—ghc-9.4.2 -BJU...

ghci> sqrt 2 :: Float
1.4142135

ghci> sqrt 2 :: Double

1.4142135623730951
ghci>

List Types

A list is a sequence of values of the same type

® © @® nrutas —ghc-9.4.2 -B/Users/nrutas/.ghcu...

ghci> :type [False, True, False]
[False, True, False] :: [Booll
ghci> :type ['a', 'b', 'c', 'd'l]

['a', 'b', 'c', 'd'] :: [Charl
ghci>

Given a type T:
[T] is the type of of lists with elements of type T

List Types

Note 1

> The type of a list says nothing about the list’s length

Note 2

> The type of the elements is unrestricted
> For example, we can have lists of lists

® O ® nrutas —ghc-9.4.2 -B/Users/nrutas/.ghcup/ghc/9.4.2]...

ghci>
ghci>
ghci> :type [['a'], ['b', 'c'], []]

(L'a']l, ['b"', 'c'], []] ¢ [[Char]]

Function lypes

A function is a mapping from values of one type
to values of another type

-- | Boolean \"not\"

not :: Bool -> Bool
not True False

not False True

Given two types X and Y:
X —> Y Is the type of functions

that map values of X to values of Y

Function lypes

Note 2

> The argument and result types are unrestricted
> For example, functions with multiple arguments or
results are possible using lists or tuples

add :: (Int,) —>
add (X,y) = x+y

zeroto :: —> |
zeroto n = [0..n]

Curried Functions

Functions with multiple arguments are also possible
by returning functions as results

add :: (’) —> add ' :: —>
add (x,y) = x+y add' Xy =X + vy

> add' takes an integer x and returns a function add’ x
> add' x takes an integer y and returns the result x+y

Curried Functions

add :: (,) —> add' :: —>
add (x,y) = x+y add' X y =X + vy

® © ®) Haskell Brooks Curry - Haskel x +

C @& wiki.haskell.org/Haskell_Brooks_Curry 2> O &
> add and add' produce the same final result, Haskell B, Curry

> but add takes its two arguments at the same time,
whereas add' takes them one at a time —

rrrrrrrrrrrrrrrr

aaaaaaaaaa

Permanent link
Page information
Cite this page

Functions that take their arguments one
at a time are called curried functions, o .

- logic and computer science.

‘ e I e b r a t I I l t I l e W O r k O f H a S k e I I ‘ : | I r r O l l He was born in 1900 and died in 1982. Today, three programming languages are
named after him, Haskell, Brooks, and Curry, and the composition of functions is

. called "currying" in his honor.

S l I C I l f u l l C t I O I l S Together with the logician Alvin Howard, he developed the idea of "propositions as

" types," now known as the Curry-Howard correspondence.
His work also played a critical part in developing the idea that logical systems based
on self-recursive expressions are inconsistent.

Curried Functions

> Functions with more than two arguments can be curried
by returning nested functions.

mult :: —> —>
mult X y z = X kx Yy % Z

® mult takes an integer x and returns a function mult x,
> which in turn takes an integer y and returns a function mult x vy,
- which finally takes an integer z and returns the result x*y*z.

Why is Currying Useful?

> Curried functions are more flexible than functions on tuples.

> Useful functions can often be made by partially applying a
curried function.

> For example:

add’ 1 :: Int —> Int
take 5 :: [Int] —> [Int]
drop 5 :: [Int] —> [Int]

Currying Conventions

> [he arrow —> associates to the rignht

> AS a consequence, it is then natural for function
application to associate to the left.

Unless tupling is explicitly required,
all functions in Haskell are normally defined in curried form.

Polymorphic Functions

A function is called polymorphic (“of many forms”)
If its type contains one or more type variables

length :: [a] —

> For any type a, length takes a list of values of type a
and returns an integer

Polymorphic Functions

> Type variables can be instantiated to different types in
different circumstances:

® © @ nrutas —ghc-9.4.2 -B/Users/nrutas/.gh...

Boo L
Int

length [True, False, Truel B

length [0, 1, 1, 2]

Q)
|

> Type variables must begin with a lower-case letter, and
are usually named a, b, c, etc.

Polymorphic Functions

> Many of the functions defined in the standard prelude
are polymorphic. For example: sea:: @1 -

fst :: (a, b) -> a O(1). Extract the first element of a list, which must be non-empty.

>>> head [1, 2, 3]
1l
>>> head [1l..]

1
el 08 (Bl o) =2 o
>>> head []

*** Exception: Prelude.head: empty list

Extract the first component of a pair.

Extract the second component of a pair.

last :: [a] -> a
curry :: ((a, b) -=> ¢) -=> a -> b -> c

O(n). Extract the last element of a list, which must be finite and non-empty.
curry converts an uncurried function to a curried function.

>>> last [1, 2, 3]

3
N
Examples >>> last [1l..]
* Hangs forever *
>>> last []

*** Exception: Prelude.last: empty list

>>> curry fst 1 2
Il

Overloaded Functions

A polymorphic function is called overloaded
iIf its type contains one or more type class constraints

® © @ program—ghc-9.4.2 -B/Users/nr...

ghci>

ghci> :type (+)

(+) :: Num a => a -> a -> a
ghci>

For any type a that is an instance of type class Num,
(+) takes two values of type a and returns a value of type a.

Overloaded Functions

> Constrained type variables can be instantiated to any
types that satisty the constraints:

® O @® program—ghc-9.4.2 -B/Users/nrutas/.ghcup/ghc/9.4.2/lib/ghc-9.4.2/lib --interactive —...

ghci>

ghci> 1 + 2

3

ghci> 1.0 + 2.0

3.0 . .
ghei> 'a + 'c+ charis not an instance of type class Num

<ilnteractive>:14:5:
e No instance for (Num Char) arising from a use of '+’
e In the expression: 'a' + 'c'
In an equation for ’‘it’: 1t = 'a'

Type Class

> Prelude exports many type classes, for example:
- Eq: Equality types
- 0rd: Ordered types
- Num: Numeric types ® © ® = program — ghc-9.4.2 -B/Users/nrutas/.gh...

> These type classes appear . type (==

in many types of functions ' A @ == | = 8 s 8008

ctype (<)
2 Ord a => a —> a —> Bool

:type (+)
:+ Num a => a -=> a => a3

Type Class: EQ

1 a —> a —> g E@U%EXEQEQEJ?\{—%EE
IS - £ =, 1R S 1585875 R it F

not (x /= vy)

X The Eq class defines equality (==) and inequality (/=).
X All basic datatypes exported by Prelude are instances of Eq.

X Eq may be derived for any datatype whose constituents are
also instances of Eq.

Type Class: EQ

X The Haskell Report defines no laws for Eq.

X However, instances are encouraged to follow these properties:

Reflexivity
X == X=True
Symmetry
X == y=y == X
Transitivity
ifx ==y && y == z=True,thenx == z =True
Extensionality
If x == y=True and £ is a function whose return type is an instance of Eq,then £ x
Negation
X /= y=not (x == vYy)

== f y=True

Type Class: EQ

Minimal complete definition

RABREE=)M(/=)MEZ—ET LRI

Methods

(==) :: a -> a -> Bool infix 4

(/=) :: a -> a -> Bool infix 4

(

compare
(<),

max, ml

compare X y = 1

KKK K

a) =>

n

(<=),

else
else

Ccase
case
case
case

1T X <=
1T X <=

Type Class: Ora

compare
compare
compare
compare

D

X X X X

1t a —>
i a —>
i a —>

then
then

y of
y of
y of
y of

ada —>
a —>
a —>
EQ

LT

{ LT
{ GT
{ GT
{ LT

y then y else X
y then x else y

AR

True;
False;
True;
False;

E \jl7
2 E

False }
True }
False }
True }

Orderingl9E X

LT | EQ | GT

Type Class: Ora

X Ord, as defined by the Haskell report,
Implements a total order and has the
following properties:

Comparability
X <=y || v <= x=True
Transitivity
Ifx <=y && y <= z=True,thenx <= z =True
Reflexivity
X <= X=True
Antisymmetry
Ifx <=y && y <= x=True,thenx == y=True

The following operator interactions are expected to hold:

1.x
2.xX

>= y=y <= X
< y=x<=y && X /=y

5 X > V=Y < X
4.x < y=compare X y == LT
5.x > y=compare X y == GT

6.x == y=compare X y == EQ

Min: Xy if x <= y then x else y=True

8.max X y if x >= y then x else y=True

Minimal complete definition

compare | (<=) Qﬂ%{fﬁ?&ﬂ%;’%ﬂ-rﬁﬂﬂﬁgOrdﬂ"]?‘kfﬁu
Methods /D\Eﬁ'ﬁ%j:iEEﬁ:l\:COmparexu(<=)W%Z_ETJ:E,‘Jggiljlb

compare :: a -> a -> Ordering

(<) :: a -> a -> Bool | infix 4|
(<=) :: a —> a -> Bool | infix 4 |
(>) t: a -> a -> Bool | infix 4|
(>=) :: a -> a -> Bool | infix 4|

max :: a -> a =-> a

min :: a -> a -> a

Type Class: Num

signum

fromInteger - -> 3

X — Y X + negate y
negate X 0 — X

Type Class: Num

X The Haskell Report defines no laws for Num.
X However, (+) and (x) are customarily expected to define a

ring and have the following properties:

Associativity of (+)

(X F V) = Z=x % (V F 2Z)
Commutativity of (+)

X + y=y + X
fromInteger O is the additive identity

X + fromInteger 0=x
negate gives the additive inverse

X + negate x=fromInteger 0
Associativity of (*)

(Xt ¥y) m2=aX (Y Z)
fromInteger 1 isthe multiplicative identity

x * fromInteger 1=xand fromInteger 1 * X=X

Distributivity of (*) with respect to (+)
a* (b+c)=(a*Db)+ (a*c)and(b + c) * a=(b * a) + (c * a)

Minimal complete definition

(+), (*), abs, signum, fromInteger, (negate | (-))
Methods

(+) :t a ->a ->a |infixl 6| £ onvca
() ¢t a->a->a |infixl 6| £ ooi-ce
(*) t: a —>a->a |infixl 7| § sou-ca
negate :: a -> a # Source

Unary negation.

abs :: a -> a # Source

Absolute value.

signum :: a -> a # Source

Sign of a number. The functions abs and signum should satisfy the law:

abs x * signum X == X

For real numbers, the signum is either -1 (negative), 0 (zero) or 1 (positive).

fromInteger :: Integer -> a # Source

¢l

3-1 What are the types of the following values?

|(False, '0'), (True, '1'")]
([False, Truel], ['0', "1'])

[tail, init, reversel

¢l

3-2 What are the types of the following functions?

second xs = head (tail xs)

swap (x, y) = (y, x)

pair x y = (x, y)

double X = X *x 2

palindrome XS = reverse XS == XS

twice f x = f (f x)

¢l

3-3 HNEARF, B+ (fEghcibiziT)
ErInt5integerfY X 5l A & showHlread Y A

3-4 [EEZ R B DA K Preludef@ RN HE X 1Y, HER
Integral 1 Fractional M "Type ClassHE M A
R zEF, BB+ (EghciLiz1T) RS
— TR ZERFHNRE

Adapted from Graham’s Lecture slides

F3F: RESKx

type and type class

AL ENX 2 E

