
计算概论A—实验班

函数式程序设计

Functional Programming

胡振江，张 伟

北京⼤学 计算机学院

2023年09～12⽉

第3章：类型与类簇

type and type class

Adapted from Graham’s Lecture slides

What is a Type?

A type is a collection of related values

For example, in Haskell
the basic type Bool, contains two logical values

True, and False

Type Errors / 类型错误

Applying a function to one or more arguments
of the wrong type is called a type error

1 is a number and False is a logical value

but + requires two numbers

Types in Haskell
‣ If evaluating an expression e would produce a

value of type T, then e has type T, written
 e :: T

‣ Every well formed expression has a type, which
can be automatically calculated at compile time
using a process called type inference.

f :: A → B, e :: A
− − − − − − − − −

f e :: B

Types in Haskell
‣ All type errors are found at compile time, which

makes programs safer and faster by removing
the need for type checks at run time

‣ In GHCi, the :type command calculates the
type of an expression, without evaluating it

Basic Types in Haskell

Bool ‣ logical values: True False
‣ exported by Prelude

Char
‣ an enumeration whose values represent Unicode code points

(i.e. characters, see http://www.unicode.org/ for details)
‣ exported by Prelude

String ‣ definition: type String = [char]
‣ exported by Prelude

Basic Types in Haskell

Int ‣ fix-precision integer numbers. GHC: [-2^63, 2^63-1]
‣ exported by Prelude

Integer ‣ arbitrary-precision integer numbers
‣ exported by Prelude

Word
‣ fix-precision unsigned integer numbers
‣ the same size with Int

‣ exported by Prelude

Natural
‣ arbitrary-precision unsigned integer numbers
‣ exported by Numeric.Natural (a module in the base

package)

Basic Types in Haskell

Float ‣ single-precision floating-point numbers
‣ exported by Prelude

Double ‣ double-precision floating-point numbers
‣ exported by Prelude

List Types

A list is a sequence of values of the same type

 Given a type T:
[T] is the type of of lists with elements of type T

List Types

Note 1 ‣ The type of a list says nothing about the list’s length

Note 2 ‣ The type of the elements is unrestricted
‣ For example, we can have lists of lists

Function Types
A function is a mapping from values of one type

to values of another type

 Given two types X and Y:
X -> Y is the type of functions

that map values of X to values of Y

Function Types

Note 2
‣ The argument and result types are unrestricted
‣ For example, functions with multiple arguments or

results are possible using lists or tuples

add :: (Int,Int) -> Int

add (x,y) = x+y

zeroto :: Int -> [Int]

zeroto n = [0..n]

Curried Functions
Functions with multiple arguments are also possible

by returning functions as results

 add :: (Int,Int) -> Int

 add (x,y) = x+y

 add' :: Int -> Int -> Int

 add' x y = x + y

‣ add' takes an integer x and returns a function add' x

‣ add' x takes an integer y and returns the result x+y

Curried Functions
 add :: (Int,Int) -> Int

 add (x,y) = x+y

 add' :: Int -> Int -> Int

 add' x y = x + y

‣ add and add' produce the same final result,
‣ but add takes its two arguments at the same time,

whereas add' takes them one at a time

Functions that take their arguments one
at a time are called curried functions,
celebrating the work of Haskell Curry on
such functions.

Curried Functions
‣ Functions with more than two arguments can be curried

by returning nested functions.

 mult :: Int -> Int -> Int -> Int

 mult x y z = x * y * z

• mult takes an integer x and returns a function mult x,

‣ which in turn takes an integer y and returns a function mult x y,

- which finally takes an integer z and returns the result x*y*z.

Why is Currying Useful?

‣ Curried functions are more flexible than functions on tuples.
‣ Useful functions can often be made by partially applying a

curried function.
‣ For example:

add’ 1 :: Int -> Int

take 5 :: [Int] -> [Int]

drop 5 :: [Int] -> [Int]

Currying Conventions
‣ The arrow -> associates to the right

Int -> Int -> Int -> Int <=> Int -> (Int -> (Int -> Int))

‣ As a consequence, it is then natural for function
application to associate to the left.

mult x y z <=> ((mult x) y) z

Unless tupling is explicitly required,

 all functions in Haskell are normally defined in curried form.

Polymorphic Functions
A function is called polymorphic (“of many forms”)

if its type contains one or more type variables

 length :: [a] -> Int

‣ For any type a, length takes a list of values of type a
and returns an integer

Polymorphic Functions
‣ Type variables can be instantiated to different types in

different circumstances:

a = Bool

a = Int

‣ Type variables must begin with a lower-case letter, and
are usually named a, b, c, etc.

Polymorphic Functions
‣Many of the functions defined in the standard prelude

are polymorphic. For example:

Overloaded Functions
A polymorphic function is called overloaded

if its type contains one or more type class constraints

 For any type a that is an instance of type class Num,

 (+) takes two values of type a and returns a value of type a.

Overloaded Functions
‣ Constrained type variables can be instantiated to any

types that satisfy the constraints:

char is not an instance of type class Num

Type Class
‣ Prelude exports many type classes, for example:

- Eq: Equality types
- Ord: Ordered types
- Num: Numeric types

‣ These type classes appear
in many types of functions

Type Class: Eq
 class Eq a where

 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)

 x == y = not (x /= y)

‣左侧是定义Eq的源代码
‣但是，有很多信息没有表现出来

✴The Eq class defines equality (==) and inequality (/=).
✴All basic datatypes exported by Prelude are instances of Eq.
✴Eq may be derived for any datatype whose constituents are

also instances of Eq.

Type Class: Eq
✴The Haskell Report defines no laws for Eq.
✴However, instances are encouraged to follow these properties:

Type Class: Eq

如果你想将类型T声明为Eq的实例

只需提供(==)和(/=)两者之⼀在T上的实现

Type Class: Ord
class (Eq a) => Ord a where

 compare :: a -> a -> Ordering

 (<), (<=), (>), (>=) :: a -> a -> Bool

 max, min :: a -> a -> a

 compare x y = if x == y then EQ

 else if x <= y then LT

 else GT

 x < y = case compare x y of { LT -> True; _ -> False }

 x <= y = case compare x y of { GT -> False; _ -> True }

 x > y = case compare x y of { GT -> True; _ -> False }

 x >= y = case compare x y of { LT -> False; _ -> True }

 -- These two default methods use '<=' rather than 'compare'

 -- because the latter is often more expensive

 max x y = if x <= y then y else x

 min x y = if x <= y then x else y

以下是类型Ordering的定义

data Ordering = LT | EQ | GT

Type Class: Ord
✴Ord, as defined by the Haskell report,

implements a total order and has the
following properties:

如果你想将类型T声明为Ord的实例

只需提供compare和(<=)两者之⼀在T上的实现

Type Class: Num
class Num a where

 {-# MINIMAL (+), (*), abs, signum, fromInteger, (negate | (-)) #-}

 (+), (-), (*) :: a -> a -> a

 -- Unary negation.

 negate :: a -> a

 -- Absolute value.

 abs :: a -> a

 -- Sign of a number.

 signum :: a -> a

 -- Conversion from an Integer.

 fromInteger :: Integer -> a

 x - y = x + negate y

 negate x = 0 - x

Type Class: Num
✴The Haskell Report defines no laws for Num.
✴However, (+) and (*) are customarily expected to define a

ring and have the following properties:

作业

3-1 What are the types of the following values?

作业

 ['a', 'b', 'c']

 ('a', 'b', 'c')

 [(False, '0'), (True, '1')]

 ([False, True], ['0', '1'])

 [tail, init, reverse]

3-2 What are the types of the following functions?

作业

 second xs = head (tail xs)

 swap (x, y) = (y, x)

 pair x y = (x, y)

 double x = x * 2

 palindrome xs = reverse xs == xs

 twice f x = f (f x)

3-3

作业

阅读教科书，⽤例⼦（在ghci上运⾏）
展示Int与Integer的区别以及show和read的⽤法

3-4 阅读教科书以及Prelude模块的相关⽂档，理解
Integral 和 Fractional 两个Type Class中定义的
函数和运算符，⽤例⼦（在ghci上运⾏）展示每
⼀个函数/运算符的⽤法

第3章：类型与类簇

type and type class

Adapted from Graham’s Lecture slides

就到这⾥吧

